Tetrakis(tetramethylammonium) Dihydrogendecavanadate Acetic Acid 2.8-Hydrate, $[N(CH_3)_4]_4[H_2V_{10}O_{28}].CH_3COOH.2.8H_2O$

BRIGITTE PECQUENARD, PETER Y. ZAVALIJ AND M. STANLEY WHITTINGHAM

Materials Research Center, State University of New York at Binghamton, Binghamton, NY 13902-6016, USA. E-mail: zavalij@binghamton.edu

(Received 8 December 1997; accepted 2 July 1998)

Abstract

The title compound was synthesized and found to crystallize in the triclinic space group $P\bar{1}$. The decavanadate cluster with two H atoms, $[H_2V_{10}O_{28}]^{4-}$, forms layers by hydrogen bonding with acetic acid and water of crystallization. The tetramethylammonium cations fill space between the layers.

Comment

Exploring the synthesis and crystal structures of the vanadium oxides, we have found that mild hydrothermal synthesis leads to the formation of the following metastable structures with open frameworks: $(TMA)V_4O_{10}$ (where TMA is the tetramethylammonium ion; Zavalij et al., 1996), Li_xV₂O₄.H₂O (Chirayil et al., 1996), (TMA)V₃O₇ (Zavalij et al., 1997a), (TMA)V₈O₂₀ (Chirayil et al., 1997), (CH₃NH₃)V₃O₇, and (CH₃NH₃)V₄O₁₀ (Chen et al., 1998). Nevertheless, often the decavanadate cluster can be formed as well. We have reported the structures of decavanadate compounds with mixed cations, namely, $[Li(H_2O)]_2$ -(TMA)₄[V₁₀O₂₈].4H₂O (Zavalij et al., 1997) and Na₄-(TMA)₂[V₁₀O₂₈].20H₂O (Zavalij et al., 1997b), and also a decavanadate with a long-chain template, [CH₃- $(CH_2)_{11}N(CH_3)_3]_4[H_2V_{10}O_{28}].4H_2O$ (Janauer et al., 1997). This work presents a new compound, (I), built

by the dihydrogendecavanadate cluster $[H_2V_{10}O_{28}]^{4-}$ (Fig. 1*a*), tetramethylammonium cations, molecular acetic acid (Fig. 1*b*) and water of crystallization.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved

Fig. 2. Hydrogen bonding of the dihydrogendecavanadate cluster, acetic acid and water of crystallization, shown along the a axis. Tetramethylammonium cations and disordered water molecules are not shown.

Acta Crystallographica Section C ISSN 0108-2701 © 1998

Refinement

The geometry of the decavanadate cluster (Table 1) is very close to that found in other decavanadate structures. Using their H atoms, decavanadate clusters are linked in centrosymmetric pairs by means of four hydrogen bonds (Fig. 2). Acetic acid and two water molecules (O1w and O2w) are also linked together by hydrogen bonds, forming an interesting chain, CH₃C(OH)O···H—O— H···OH₂. Its three external OH groups form hydrogen bonds with O atoms of the decavanadate pairs, joining them into a two-dimensional sheet in the *bc* plane (Fig. 2). Two disordered water molecules [O3w and O4w, with occupation factors of 0.43 (2) and 0.36 (2), respectively] form hydrogen bonds (Table 2) with the same pair of O atoms (O21 and O17), which belong to decavanadate clusters of different sheets.

Experimental

The title compound was prepared hydrothermally by mixing V_2O_5 and Al(NO₃)₃.9H₂O powder with an aqueous 25% tetramethylammonium solution in a 1:2:4 molar ratio. Acetic acid (3 *M*, 30 ml) were then added; the initial pH of the resulting solution was 2.94. Then the solution was transferred to a 125 ml Teflon-lined autoclave (Parr bomb), sealed and reacted hydrothermally for 4 d at 473 K. The pH of the solution after reaction was 4.78. The resulting mixture was filtered, washed with distilled water and dried in air. It gave dark-orange crystals of the title compound and a light-green powder, which is still under investigation.

Crystal data

 $(C_4H_{12}N)_4[H_2V_{10}O_{28}]$.-Mo $K\alpha$ radiation $\lambda = 0.7107 \text{ Å}$ $C_2H_4O_2.2.8H_2O$ $M_r = 1366.6$ Cell parameters from 2012 Triclinic reflections $P\overline{1}$ $\theta = 3 - 28^{\circ}$ $\mu = 1.98 \text{ mm}^{-1}$ a = 12.6690(4) Å T = 295 Kb = 12.6905 (4) Åc = 15.8223(5) Å Prism $\alpha = 73.092 (1)^{\circ}$ $0.36 \times 0.32 \times 0.29$ mm $\beta = 78.875(1)^{\circ}$ Dark orange $\gamma = 78.849 (1)^{\circ}$ V = 2362.5 (3) Å³ Z = 2 $D_x = 1.921 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Siemens Smart CCD diffrac-	9335 reflections with
tometer	$F_o > 4\sigma(F_o)$
ω scans	$R_{\rm int} = 0.025$
Absorption correction:	$\theta_{\rm max} = 28.5^{\circ}$
multi-scan (SADABS;	$h = -16 \rightarrow 13$
Sheldrick, 1996)	$k = -16 \rightarrow 16$
$T_{\rm min} = 0.511, T_{\rm max} = 0.563$	$l = -20 \rightarrow 20$
14 948 measured reflections	
10 265 independent	
reflections	

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.01$
R = 0.046	$\Delta \rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.071	$\Delta \rho_{\rm min} = -0.66 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.82	Extinction correction: none
9335 reflections	Scattering factors from Inter-
609 parameters	national Tables for X-ray
H atoms: see below	Crystallography (Vol. IV)
$w = 1/[\sigma^2(F_o) + 0.002F_o^2]$	

Table 1. Selected geometric parameters (Å, °)

V1-016	1.614 (2)	V.3	2.250(2)
V1-08	1.794 (2)	V7	1.679(2)
V102	1.831(2)	V7O1	1.691(2)
V1-09	2.008(2)	V7—O27	1.933 (2)
V1012	2.045(2)	V703	1.955(2)
V1	2.241 (2)	V7—O5	2.065(2)
V3018	1.605 (3)	V7—O28	2.179(2)
V3—019	1.735 (2)	C17—C18	1.450(11)
V3—027	1.918(2)	C18-030	1.253(6)
V3—09	1.942 (2)	C18—O29	1.255 (6)
V3—07	2.129 (2)		
O30-C18-O29	118.7 (5)	O29-C18-C17	120.4 (6)
O30-C18-C17	120.7 (6)		

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O9—H1···O12 ¹	0.83 (4)	1.92 (4)	2.745 (3)	171 (4)
O7—H2· · ·O16′	1.01(4)	1.78 (4)	2.752 (3)	160(3)
O30-H54···O3"	0.92	1.80	2.662 (4)	156
O1w—H55↔ •O22 ^m	0.95	2.08	2.869 (4)	140
O1w—H56↔ •O13 [™]	0.95	1.87	2.798 (4)	166
O2w-H57···O29	0.96	1.84	2.761 (7)	159
O2w—H58· · · O1w	0.96	1.88	2.822(7)	167
O3w—H59···O21	1.00	1.96	2.96 (2)	175
O3w—H60· · ·O17 ⁿ	0.98	1.98	2.96 (2)	175
O4w—H61· · · O21	1.00	1.86	2.86(2)	179
O4w—H62···O17 ⁿ	0.99	1.92	2.91 (2)	179
Symmetry codes: (i) -	-x, 1-y, 1-	z; (ii) 1 - x, 1	-v, -z; (iii)	1+x, y-1, z;

Symmetry codes: (i) -x, 1-y, 1-z; (ii) 1-x, 1-y, -z; (iii) 1+x, y-1, z(iv) 1-x, 1-y, 1-z.

The crystal structure was solved by direct methods. All V atoms and most of the O atoms were located from the E map. The rest of the non-H atoms and all H atoms, except those of disordered water molecules, were found from the subsequent difference Fourier syntheses. The positions of the H atoms of the disordered water molecules were calculated, taking into consideration hydrogen bonding with the closest atoms, O17 and O29. Parameters of the decavanadate H atoms were refined. Positions of the H atoms of the four TMA ions were calculated, but a single U value for all 12 H atoms in each of the four cations was refined. The water molecule H-atom parameters were not refined. The ellipsoid for O4w is very eccentric, probably due to the disorder, and therefore O4w is not well localized.

Data collection: *SMART* (Siemens, 1995). Cell refinement: *SAINT* (Siemens, 1995). Data reduction: *SAINT*. Program(s) used to solve structure: *CSD* (Akselrud *et al.* 1993). Program(s) used to refine structure: *CSD*. Molecular graphics: *PLATON*97 and *PLUTON*97 (Spek, 1990). Software used to prepare material for publication: *CSD*.

The work at Binghamton was supported by the National Science Foundation. We also thank Professor Jon Zubieta from Syracuse University for the use of the single-crystal diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1385). Services for accessing these data are described at the back of the journal.

References

- Akselrud, L. G., Zavalij, P. Y., Grin, Yu. N., Pecharsky, V. K., Baumgartner, B. & Wolfel, E. (1993). *Mater. Sci. Forum*, **133–136**, 335–340.
- Chen, R., Zavalij, P. Y. & Whittingham, M. S. (1998). J. Mater. Chem. In the press.
- Chirayil, T., Zavalij, P. Y. & Whittingham, M. S. (1996). Solid State Ion. 84, 163-168.
- Chirayil, T., Zavalij, P. Y. & Whittingham, M. S. (1997). J. Mater. Chem. 7, 2193-2197.
- Janauer, G. G., Dobley, A. D., Zavalij, P. Y. & Whittingham, M. S. (1997). Chem. Mater. 9, 647–649.
- Sheldrick, G. M. (1996). SADABS. Empirical Absorption Correction Program. University of Göttingen, Germany.

Siemens (1995). SMART and SAINT. Data Collection and Processing Software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Zavalij, P. Y., Chirayil, T. & Whittingham, M. S. (1997a). Acta Cryst. C53, 879-881.
- Zavalij, P. Y., Chirayil, T. & Whittingham, M. S. (1997b). Z. Kristallogr. 212, 321-322.
- Zavalij, P. Y., Whittingham, M. S., Boylan, E. A., Pecharsky, V. K. & Jacobson, R. A. (1996). Z. Kristallogr. 211, 464–464.
- Zavalij, P. Y., Whittingham, M. S., Chirayil, T., Pecharsky, V. K. & Jacobson, R. A. (1997). Acta Cryst. C53, 170–171.

C—O—B ring. Of the two PPh₃ ligands, one is bound to the Pt atom and the other to a B atom.

Comment

We have developed an interest in exopolyhedral cyclization of metal ligands to clusters, especially sulfurcontaining ligands. Beckett et al. (1985) reported an exopolyhedral heterocyclic platinaundecaborane [μ -2,7-(SCSNEt₂)-7-(PMe₂Ph)-nido-7-PtB₁₀H₁₁] via a ligandexchange-type process from the reaction of [7,7- $(PMe_2Ph)_2$ -nido-7-PtB₁₀H₁₂] with [AuBr₂(SCSNEt₂)]. The reactions of CS₂ with metallated boron-containing cluster compounds result in a series of exopolyhedral cyclic compounds containing five-membered M-S-C—S—B rings; metals include Rh (Ferguson et al., 1990), Re and Os (Coldicott, 1994), and Ir (Coldicott, 1994; Coldicott et al., 1996). We have developed a further type of exopolyhedral cyclization process resulting in a five-membered M-S-C-O-B ring on the eleven-vertex metallaborane: this occurs via a direct process from the reaction of $MCl_2(PPh_3)_2$ (M = Ni, Pt) or $MCl_2(PPh_3)_3$ (M = Ru) and $(NEt_4)_2B_{10}H_{10}$ with PhCOSH in dichloromethane solution (Dou, Hu, Yao et al., 1997; Dou, Hu, Sun et al., 1997; Hu et al., 1997, 1998; Yao et al., 1998). We report here another example of thiobenzoate linkage, a platinaundecaborane, (I), $[(PPh_3)(PhCOS)PtB_{10}H_9(PPh_3)]$. 1.5CHCl₃.

An Exopolyhedral Cyclized Platinaundecaborane: [(PPh₃)(PhCOS)PtB₁₀H₉(PPh₃)].-1.5CHCl₃

Chun-Hua Hu," Jian-Min Dou," Hai-Jun Yao, Jing-De Wei,^b Ruo-Shui Jin,^b Jie Sun^c and Pei-Ju Zheng"

^aResearch Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China, ^bDepartment of Chemistry, Fudan University, Shanghai 200433, People's Republic of China, and ^cShanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China. E-mail: pjcheng@fudan.edu.cn

(Received 3 April 1998; accepted 3 August 1998)

Abstract

The title platinaundecaborane species, $7,11-(\mu-\text{thiobenzoato}-S:O)-7,10-\text{bis}(\text{triphenylphosphine}-P)-8:9-\mu H-7-platina-$ *nido*-undecaborane-chloroform (1/1.5), has a*nido* $-type {PtB₁₀} cage with a five-membered Pt—S—$

The cluster has a *nido*-eleven-vertex $\{PtB_{10}\}$ polyhedral skeleton and has a five-membered Pt-S-C-O-B ring of exopolyhedral cyclization via one thiobenzoate. Its structure is shown in Fig. 1. The Pt atom is bound to the S atom of thiobenzoate, the P atom of the PPh_3 ligand and four B atoms of the $\{PtB_{10}\}$ cage. The Pt-P and Pt-S bond lengths are similar to those in previous reports (Beckett et al., 1985; Hu et al., 1998). The Pt—B bond lengths [2.187(12)-2.256(10) Å] are significantly shorter than the corresponding distances in non-cyclized platinaundecaboranes [2.214 (5)-2.301 (6) (Boocock *et al.*, 1981) and 2.206(12)-2.342(13) Å (Crook et al., 1984)]. This could be due to the formation of the five-membered Pt-S-C-O-B ring. This ring is only approximately planar (r.m.s. deviation 0.0577 A). Cyclization occurs on the B11 atom of the open PtB4 face, which is similar to our previous report (Hu et al., 1998), but on the B2 atom in the work of Beckett et al. (1985). In the cluster, a PPh₃ ligand connects with the