Acta Cryst. (1998). C54, 1833-1835

Tetrakis(tetramethylammonium) Dihydrogendecavanadate Acetic Acid 2.8-Hydrate, $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{4}\left[\mathrm{H}_{2} \mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot \mathrm{CH}_{3} \mathrm{COOH} .2 .8 \mathrm{H}_{2} \mathrm{O}$

Brigitte Pecquenard, Peter Y. Zavalij and M. Stanley Whittingham
Materials Research Center, State University of New' York at Binghamton, Binghamton, NY 13902-6016, USA. E-mail: zavalij@binghamton.edu

(Received 8 December 1997; accepted 2 July 1998)

Abstract

The title compound was synthesized and found to crystallize in the triclinic space group $P \overline{1}$. The decavanadate cluster with two H atoms, $\left[\mathrm{H}_{2} \mathrm{~V}_{10} \mathrm{O}_{28}\right]^{4-}$, forms layers by hydrogen bonding with acetic acid and water of crystallization. The tetramethylammonium cations fill space between the layers.

Comment

Exploring the synthesis and crystal structures of the vanadium oxides, we have found that mild hydrothermal synthesis leads to the formation of the following metastable structures with open frameworks: (TMA) $\mathrm{V}_{4} \mathrm{O}_{10}$ (where TMA is the tetramethylammonium ion; Zavalij et al., 1996), $\mathrm{Li}_{x} \mathrm{~V}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Chirayil et al., 1996), (TMA) $\mathrm{V}_{3} \mathrm{O}_{7}$ (Zavalij et al., 1997a), (TMA) $\mathrm{V}_{8} \mathrm{O}_{20}$ (Chirayil et al., 1997), $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{V}_{3} \mathrm{O}_{7}$, and $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{V}_{4} \mathrm{O}_{10}$ (Chen et al., 1998). Nevertheless, often the decavanadate cluster can be formed as well. We have reported the structures of decavanadate compounds with mixed cations, namely, $\left[\mathrm{Li}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}-$ (TMA) $4_{4}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Zavalij et al., 1997) and $\mathrm{Na}_{4}-$ (TMA) $)_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}$ (Zavalij et al., 1997b), and also a decavanadate with a long-chain template, $\left[\mathrm{CH}_{3}-\right.$
 1997). This work presents a new compound, (I), built

(I)
by the dihydrogendecavanadate cluster $\left[\mathrm{H}_{2} \mathrm{~V}_{10} \mathrm{O}_{28}\right]^{4-}$ (Fig. 1a), tetramethylammonium cations, molecular acetic acid (Fig. 1b) and water of crystallization.

(a)

(b)

Fig. 1. Displacement ellipsoid plots (50% probability) of (a) $\left[\mathrm{H}_{2} \mathrm{~V}_{10} \mathrm{O}_{28}\right]^{4-}$ and (b) tetramethylammonium and acetic acid.

Fig. 2. Hydrogen bonding of the dihydrogendecavanadate cluster, acetic acid and water of crystallization, shown along the a axis. Tetramethylammonium cations and disordered water molecules are not shown.

The geometry of the decavanadate cluster (Table 1) is very close to that found in other decavanadate structures. Using their H atoms, decavanadate clusters are linked in centrosymmetric pairs by means of four hydrogen bonds (Fig. 2). Acetic acid and two water molecules (Olw and $\mathrm{O} 2 w$) are also linked together by hydrogen bonds, forming an interesting chain, $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH}) \mathrm{O} \cdots \mathrm{H}-\mathrm{O}-$ $\mathrm{H} \cdot \mathrm{OH}_{2}$. Its three external OH groups form hydrogen bonds with O atoms of the decavanadate pairs, joining them into a two-dimensional sheet in the $b c$ plane (Fig. 2). Two disordered water molecules [O3w and $\mathrm{O} 4 w$, with occupation factors of 0.43 (2) and 0.36 (2), respectively] form hydrogen bonds (Table 2) with the same pair of O atoms (O 21 and O 17), which belong to decavanadate clusters of different sheets.

Experimental

The title compound was prepared hydrothermally by mixing $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}$ powder with an aqueous 25% tetramethylammonium solution in a 1:2:4 molar ratio. Acetic acid ($3 M, 30 \mathrm{ml}$) were then added; the initial pH of the resulting solution was 2.94 . Then the solution was transferred to a 125 ml Teflon-lined autoclave (Parr bomb), sealed and reacted hydrothermally for 4 d at 473 K . The pH of the solution after reaction was 4.78 . The resulting mixture was filtered, washed with distilled water and dried in air. It gave dark-orange crystals of the title compound and a light-green powder, which is still under investigation.

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)_{4}\left[\mathrm{H}_{2} \mathrm{~V}_{10} \mathrm{O}_{28}\right]$.-
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} .2 .8 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1366.6$
Triclinic
$P \overline{1}$
$a=12.6690$ (4) \AA
$b=12.6905$ (4) \AA
$c=15.8223(5) \AA$
$\alpha=73.092(1)^{\circ}$
$\beta=78.875(1)^{\circ}$
$\gamma=78.849(1)^{\circ}$
$V=2362.5(3) \AA^{3}$
$Z=2$
$D_{x}=1.921 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens Smart CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.511, T_{\text {max }}=0.563$
14948 measured reflections
10265 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 2012 reflections
$\theta=3-28^{\circ}$
$\mu=1.98 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism
$0.36 \times 0.32 \times 0.29 \mathrm{~mm}$
Dark orange

9335 reflections with
$F_{o}>4 \sigma\left(F_{o}\right)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=28.5^{\circ}$
$h=-16 \rightarrow 13$
$k=-16 \rightarrow 16$
$l=-20 \rightarrow 20$

Refinement

Refinement on F
$R=0.046$
$n \cdot R=0.071$
$S=1.82$
9335 reflections
609 parameters
H atoms: see below
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{n}\right)+0.002 F_{0}^{2}\right]$
$(\Delta / \sigma)_{\max }=0.01$
$\Delta \rho_{\max }=0.79 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.66 \mathrm{e}^{-3}$
$\Delta \rho_{\max }=-0.66 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Scattering factors from International Tables for X-ray. Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{VI}-\mathrm{O} 16$	$1.614(2)$	$\mathrm{V} 3-\mathrm{O} 28$	$2.250(2)$
$\mathrm{VI}-\mathrm{O} 8$	$1.794(2)$	$\mathrm{V} 7-\mathrm{O} 20$	$1.679(2)$
$\mathrm{VI}-\mathrm{O} 2$	$1.831(2)$	$\mathrm{V} 7-\mathrm{O} 1$	$1.691(2)$
$\mathrm{VI}-\mathrm{O} 9$	$2.008(2)$	$\mathrm{V} 7-\mathrm{O} 27$	$1.933(2)$
$\mathrm{VI}-\mathrm{O} 12$	$2.045(2)$	$\mathrm{V} 7-\mathrm{O} 3$	$1.955(2)$
$\mathrm{VI}-\mathrm{O} 28$	$2.241(2)$	$\mathrm{V} 7-\mathrm{O} 5$	$2.065(2)$
$\mathrm{V}-\mathrm{O} 18$	$1.605(3)$	$\mathrm{V} 7-\mathrm{O} 28$	$2.179(2)$
$\mathrm{V} 3-\mathrm{O} 19$	$1.735(2)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.450(11)$
$\mathrm{V} 3-\mathrm{O} 27$	$1.918(2)$	$\mathrm{C} 18-\mathrm{O} 30$	$1.253(6)$
$\mathrm{V} 3-\mathrm{O} 9$	$1.942(2)$	$\mathrm{C} 18-\mathrm{O} 29$	$1.255(6)$
$\mathrm{V} 3-\mathrm{O} 7$	$2.129(2)$		
$\mathrm{O} 30-\mathrm{C} 18-\mathrm{O} 29$	$118.7(5)$	$\mathrm{O} 29-\mathrm{C} 18-\mathrm{C} 17$	$120.4(6)$
$\mathrm{O} 30-\mathrm{C} 18-\mathrm{C} 17$	$120.7(6)$		

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \cdot$	D-H	H. . A	D. . A	D-H. . . A
O9- $\mathrm{HI} \cdots \mathrm{Ol}^{1}$	(0.83 (4)	1.92 (4)	2.74 .5 (3)	171 (4)
O7- $\mathrm{H}_{2} \cdots \mathrm{O}^{\prime}$	1.01 (4)	1.78 (4)	2.752 (3)	160)(3)
$\mathrm{O} 30-\mathrm{H} 54 \cdots \mathrm{O} 3^{11}$	0.92	1.80	2.662 (4)	156
O1n-H55 . $\mathrm{O} 22^{\prime \prime \prime}$	0.95	2.08	2.869 (4)	140
O1n-H56 . $\mathrm{Ol} 3^{11}$	0.95	1.87	2.798 (4)	166
O2n-H57. . O 29	0.96	1.84	2.761 (7)	159
$\mathrm{O} 2 \mathrm{w}-\mathrm{H} 58 \cdots \mathrm{Olw}$	0.96	1.88	2.822 (7)	167
O3n-H59..O21	1.00	1.96	2.96 (2)	175
O3n-H60) . $017{ }^{11}$	0.98	1.98	2.96 (2)	175
$\mathrm{O} 4 \mathrm{n}-\mathrm{H} 61 \cdots \mathrm{O} 21$	1.00	1.86	2.86 (2)	179
O4n-H62 . $\mathrm{Ol}^{7}{ }^{1}$	0.99	1.92	2.91 (2)	179

Symmetry codes: (i) $-x, 1-y, 1-z:$ (ii) $1-x, 1-y,-z:$ (iii) $1+x, y-1, z:$ (iv) $1-x, 1-y, 1-z$

The crystal structure was solved by direct methods. All V atoms and most of the O atoms were located from the E map. The rest of the non- H atoms and all H atoms, except those of disordered water molecules, were found from the subsequent difference Fourier syntheses. The positions of the H atoms of the disordered water molecules were calculated, taking into consideration hydrogen bonding with the closest atoms, O 17 and O29. Parameters of the decavanadate H atoms were refined. Positions of the H atoms of the four TMA ions were calculated, but a single U value for all 12 H atoms in each of the four cations was refined. The water molecule H -atom parameters were not refined. The ellipsoid for $\mathrm{O} 4 w$ is very eccentric, probably due to the disorder, and therefore $\mathrm{O}_{4} \mathrm{n}^{\prime}$ is not well localized.

Data collection: SMART (Siemens, 1995). Cell refinement: SAINT (Siemens, 1995). Data reduction: SAINT. Program(s) used to solve structure: CSD (Akselrud et al. 1993). Program(s) used to refine structure: $C S D$. Molecular graphics: PLATON97 and PLUTON97 (Spek, 1990). Software used to prepare material for publication: $C S D$.

The work at Binghamton was supported by the National Science Foundation. We also thank Professor Jon Zubieta from Syracuse University for the use of the single-crystal diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1385). Services for accessing these data are described at the back of the journal.

References

Akselrud, L. G., Zavalij, P. Y.. Grin, Yu. N., Pecharsky, V. K., Baumgartner, B. \& Wolfel, E. (1993). Mater. Sci. Forum, 133-136, 335-340.
Chen, R., Zavalij. P. Y. \& Whittingham, M. S. (1998). J. Mater. Chem. In the press.
Chirayil, T., Zavalij, P. Y. \& Whittingham. M. S. (1996). Solid State Ion. 84, 163-168.
Chirayil, T., Zavalij. P. Y. \& Whitingham, M. S. (1997). J. Mater. Chem. 7, 2193-2197.
Janauer, G. G., Dobley, A. D., Zavalij, P. Y. \& Whittingham, M. S. (1997). Chem. Mater. 9. 647-649.

Sheldrick. G. M. (1996). SADABS. Empirical Absorption Correction Program. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Data Collection and Processing Software for the SMART System. Siemens Analytical X-ray Instruments Inc.. Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Crnst. A46, C-34.
Zavalij, P. Y., Chirayil. T. \& Whittingham, M. S. (1997a). Acta Cryst. C53, 879-881.
Zavalij, P. Y., Chirayil, T. \& Whittingham, M. S. (1997b). Z. Kristallogr. 212, 321-322.
Zavalij, P. Y., Whittingham, M. S., Boylan, E. A., Pecharsky, V. K. \& Jacobson, R. A. (1996). Z. Kristallogr. 211, 464-464.
Zavalij, P. Y., Whittingham, M. S., Chirayil, T.. Pecharsky, V. K. \& Jacobson, R. A. (1997). Acta Cryst. C53, 170-171.

Acta Cryst. (1998). C54, 1835-1837

An Exopolyhedral Cyclized Platinaundecaborane: $\left[\left(\mathbf{P P h}_{3}\right)\left(\mathbf{P h C O S}^{2} \mathbf{P t B}_{10} \mathbf{H}_{9}\left(\mathbf{P P h}_{3}\right)\right]\right.$.$1.5 \mathrm{CHCl}_{3}$

Chun-Hua Hu, ${ }^{\text {a }}$ Jian-Min Dou, ${ }^{a}$ Hai-Jun Yao, ${ }^{b}$ Jing-De Wei, ${ }^{b}$ Ruo-Shui Jin, ${ }^{b}$ Jie Sun ${ }^{c}$ and Pei-Ju Zheng ${ }^{a}$
${ }^{a}$ Research Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China, ${ }^{b}$ Department of Chemistry, Fudan University; Shanghai 200433, People's Republic of China, and 'Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China. E-mail: pjzheng@fudan.edu.cn
(Received 3 April 1998; accepted 3 August 1998)

Abstract

The title platinaundecaborane species, 7,11-(μ-thio-benzoato-S:O)-7,10-bis(triphenylphosphine-P)-8:9- $\mu \mathrm{H}$ -7-platina-nido-undecaborane-chloroform (1/1.5), has a nido-type $\left\{\mathrm{PtB}_{10}\right\}$ cage with a five-membered $\mathrm{Pt}-\mathrm{S}$ -

$\mathrm{C}-\mathrm{O}-\mathrm{B}$ ring. Of the two PPh_{3} ligands, one is bound to the Pt atom and the other to a B atom.

Comment

We have developed an interest in exopolyhedral cyclization of metal ligands to clusters, especially sulfurcontaining ligands. Beckett et al. (1985) reported an exopolyhedral heterocyclic platinaundecaborane [μ-2,7(SCSNEt_{2})-7-($\mathrm{PMe}_{2} \mathrm{Ph}$)-nido-7- $\mathrm{PtB}_{10} \mathrm{H}_{11}$] via a ligand-exchange-type process from the reaction of $[7,7-$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$-nido- $7-\mathrm{PtB}_{10} \mathrm{H}_{12}$] with $\left[\mathrm{AuBr}_{2}\left(\mathrm{SCSNEt}_{2}\right)\right]$. The reactions of CS_{2} with metallated boron-containing cluster compounds result in a series of exopolyhedral cyclic compounds containing five-membered $M-S$ -$\mathrm{C}-\mathrm{S}-\mathrm{B}$ rings; metals include Rh (Ferguson et al., 1990), Re and Os (Coldicott, 1994), and Ir (Coldicott, 1994; Coldicott et al., 1996). We have developed a further type of exopolyhedral cyclization process resulting in a five-membered $M-S-\mathrm{C}-\mathrm{O}-\mathrm{B}$ ring on the eleven-vertex metallaborane; this occurs via a direct process from the reaction of $M \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(M=$ $\mathrm{Ni}, \mathrm{Pt})$ or $M \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(M=\mathrm{Ru})$ and $\left(\mathrm{NEt}_{4}\right)_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ with PhCOSH in dichloromethane solution (Dou, Hu , Yao et al., 1997; Dou, Hu, Sun et al., 1997; Hu et al., 1997, 1998; Yao et al., 1998). We report here another example of thiobenzoate linkage, a platinaundecaborane, (I), $\left[\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PhCOS}^{2} \mathrm{PtB}_{10} \mathrm{H}_{9}\left(\mathrm{PPh}_{3}\right)\right] .1 .5 \mathrm{CHCl}_{3}\right.$.

(I)

The cluster has a nido-eleven-vertex $\left\{\mathrm{PtB}_{10}\right\}$ polyhedral skeleton and has a five-membered $\mathrm{Pt}-\mathrm{S}-\mathrm{C}-$ $\mathrm{O}-\mathrm{B}$ ring of exopolyhedral cyclization via one thiobenzoate. Its structure is shown in Fig. 1. The Pt atom is bound to the S atom of thiobenzoate, the P atom of the PPh_{3} ligand and four B atoms of the $\left\{\mathrm{PtB}_{10}\right\}$ cage. The $\mathrm{Pt}-\mathrm{P}$ and $\mathrm{Pt}-\mathrm{S}$ bond lengths are similar to those in previous reports (Beckett et al., 1985; Hu et al., 1998). The $\mathrm{Pt}-\mathrm{B}$ bond lengths [2.187(12)-2.256(10) \AA] are significantly shorter than the corresponding distances in non-cyclized platinaundecaboranes [2.214 (5)-2.301 (6) (Boocock et al., 1981) and 2.206(12)-2.342(13) A (Crook et al., 1984)]. This could be due to the formation of the five-membered $\mathrm{Pt}-\mathrm{S}-\mathrm{C}-\mathrm{O}-\mathrm{B}$ ring. This ring is only approximately planar (r.m.s. deviation $0.0577 \AA$). Cyclization occurs on the B11 atom of the open PtB_{4} face, which is similar to our previous report (Hu et al., 1998), but on the B2 atom in the work of Beckett et al. (1985). In the cluster, a PPh_{3} ligand connects with the

